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a Constant of separation of partial diffetuntial equations
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CIh(e) Gegenbsuer ;.;iynomial
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D Drag of sphere
D Normal drag of sphere
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f(r) Fuigtion of ¢
1(6) Function of 6
f(a), F(a), Arbiteary functions in cylindrical coordinate solution
g9(a), G (a)
F (). Function of ¢
g Gravitational consizyt
lo Modified Beassl function, ficat kind, zero order
I, Modified Besse! function, firct kind, first order
k, Constants
K Wall correction factor
Ko Modified Bessel fuaction, secoad kind, sero nrder
K, Modified Bessel fuaction, second kind, first ocder
L Openrator [32 + 1-cos®e & ] or [ﬁ+ -f-- ! -'2-]
FT 2 3 cos 62 afz 3p2 P dp
=~ Coastaat
Integer
Pressure
’, Stress component 1n rdirectiocs
P.0 Stress component in #-direction

iv

TR A e Ml T D

. N ot o
Conpne i BRI s i M ey, T

ek e o AP A e SR ety e AN e IS K IR AP o e sy

LW R g e e R - -



P, (£)

Q(r)

0 (0)

r,0

R

R(r)
S(r)
8,85, 84,8,
53, 53, 8¢
4

T(¢)

¥, Yy

U

' Y9

" Ratio of radii = ?' o —

Legendre polynomial

Function of ¢

Legendre function of second kind
Spherical coordinates

Radius of sphere

Function of 7

Function of r

Expressions deiined by Equation [43]
Integrals defined on page 17

cos 6

Function of ¢

Velocity components inside sphere in spherical coordinates
Uniform velocity

Yelocity components in spherical coordinates

Velocity components in cylindrical coordinates

Maximum velocity of parabolic velocity distribution

Cylindrical coordinates

Order of various functions
Constants defined on page 15
Density of extemal medium. Euler’s constant
Density of sphece

R R

b

Dynamic viscosity of external mediuin
Dynamic viscosity of fluid inside =pham
Radius of spherical container
Function of p
Viscosity ratio = x/;
Function defined in Equation (48]
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ABSTRACT

This renort considers the problem of steady, axial t-xlation of rigid
and (luid spheres in stationary and moving viscous, incoiasres _ibie fluids
bounded by an infinitely long =ylinder. The investigation 15 based on Stokes’
approximation for the hydrodynamic equations for slow flow; thus inertia terms
can be neglected, and the stream function satislies u fourth-order differential
equation similar in form to the biharmonic one.

An exact solution for the motion of rigid spheres in s:ill and moving
liquids within a cylindrical container has been obtained in ter:1s of an infinite
#¢t of linear algebraic equations for the cuefficients in the Stokes stream func-
tion. It iz shown that the drag of a sphere in motion within & moving liquid is
composad of two parts: namely, the drag due to the motion v the aphere i: a
still Hiquid inside the cylindrical tube, and the drag due to the motion of the
liquid ithin the cylindrical tube past a stationary sphere. The drag experienced
i1 the vigid spheres has been determined for the two special cases over a range
of ratios of sphere-to-cylindt diameter. It is also shown that the first two equa-
tice.: of the iafinite set closely approximate the motion an< Jrag of rigid spheres
over a large runge of diameter ratios.

For fluid spheres (i.e., spheres which have dil'....{ physical properties
than e externai mediuni and are characterized by internal motion) an approxi-
mate sclution (similar to the one for the rigid case) is obtained. The deag ex-
perienced by the fluid spheres has been computed for the two special cases
mentioned ukove for a range of diameter ratios.

Expetimental iesults for the rigid and fluid case confirm the theory. In
general, the results show that the wall effect for fluid sphorcs is less than for
corresponding rigid spheres. Stream!ines and velocity J:u## % tions for several
cases where the diameter ratio is 0.5 are compared with those in an infinite
mediam.

INTRODUCTION

The effect of the proximity of the container walls on the drag of moving bodies is of
interest in many fields of physics and engineering. Examples arc ihe vae of the falling ball
viscosimeter, and the rise of air bubbles in tubes. The purpose of the present investigation
is to determine the drag of a spherical body rising or falling iu: stea >, slow motion (i.e., the
inertia torms in the equation of motion can be neglected) in a ligmia (stationary or moving)
inside an infinitely long cylinder. Both rigid and fluid spheres (d*na, air bebbles) are
considered.




Previous investigations on the effect of the proximity of the contsiner walls on the
drag of moving bodies have dealt with rigid spheres.® Ladenburg! and Faxén? studied the
drag of spheres moving in a still liquid contained in an infinitely long cylinder.** Wakiya®
and Happel and Byrne® determined the drag of spheres in Poiseuille flow (parabolic velocity
distribution) in a cylindrical tube. Wakiya considered the wall effect of a fixed rigid sphere
in Poiseuille flow. Happel and Byrne alss included the case where the rigid sphere is moving
inside the cylinder. All used the method of reflection to obtain their solution. Starting with
the known solution for the rigid sphere in an infinite medium, a ‘‘reflection’’ flow is superposed
such that the boundary conditions on the cyiinder are satisfied exactly. The boundary condi-
tions on the sphere are only approximately satisfied. The drag of the spheres is obtained from
Stokes' law using the velocity of the sphere increased by the averago ‘‘reflection’’ velocity
on the sphere. In all instances approximate expressions for the drag of the rigid sphores were
given. Cunningham,” Williams,® and Lee® considered the motion of a rigid sphere at the in-  *
stant it passes the center of a spherical container. Bond'® suggested an approximate ex} :es-
sion for the wall effect of fluid spheres in cylinders, based on Ladenburg’s results.

In the present study, two peoblems are considered. The first problem deals with the
steady, slow motion of rigid spheres along the axis of an infinitely long circular cylinder.
The boundary conditions in this case are: uniform velocity ‘on the sueface of the sphere, zero
velocity on the cylinder, zero velocity or parabolic velocity distribution at infinity. The solu-
tion of the problem is effected by means of the Stokes stream function for axisymmeteic flow.
The motion of the spheres in a cylinder is solved in terms of a system of linear algebraic equa-
tions for the constants in a series expansion for the stream function. Numerical results are
obtained for the drag of the rigid . pheres for diameter ratios up to 0.8. Values of wall correc-
tion factors have been computed for two specisl cases: namely, (1) when the sphere is in
motion in a stationary liquid, and (2) when the liquid is in motion within the cylindeical tube
past a stationary sphere. The drag of moving spheres within a moving liquid can be obtained by
appropriate combination of these two correction factors. It is also shown that the first two
equations of the infinite set closely approx mate the drag over a large range of diametar
ratios.

The second problem deals with the mot.on of fluid spheres (i.e., spheres which con-
sist of a fluid that has diffecent physical properties than the external medium, and are

*During pul'tication of this re351t, a paper dealine with the wall effect of spheroids has come to the attemtion
of the authors (Rrinence 30).
*eThe correi;-viding two-dimecaaisnal problem (8 circular cylinder moving perallel with the two comteiner walls)
has been treated by Fnéﬁs i’ ek i 4

ikefmes are listed »~ page 68,



characterized by internal mation) along the axis of a circular cylinder.® In contrast to the
rigid case, the shape of fluid bodies ~»anot be specified beforehand. The shape is a conse-
quence of the motion such that the boundary conditions are satisfied at the body interface.
For the slow motion of a fluid body in an infinite medium, it was shown analytically by
Hadamard 12 and Rybczynskil3 that the sphere is a possible shape for which the boundary con-
ditions (continuity of velocity and stress, no diffusion) are satisfied. Experimental evidence
by Spells®* indicates that the spherica! shape is actually attained by fluid bodies in slow
motion. In the present analysis, a spherical shape is assumed for fluid bodies moving within
a cvlindrical tube, and an approximate solution (similar to the approximate solution for the
rigid case) is obtained. As before, values of wall correction factors have been computed for
the two special cases. The validity of the approximation is confirmed by experiments with
drops moving in s still liquid. The experimental investigation shows that the shape of a fluid
body in slow motion inside a cylinder is not exactly spherical. The drag of such nonspherical
bodies can be evaluated from the theoretical solution if an equivalent radius based on its
volume is used, and if the diameter ratio is smaller than 0.5. In general, it is shown that the
wall effect for fluid spheres is less than for corresponding rigid spheres. Stream functions
have been evaluated for rigid and fluid spheres in a stationary liquid for a diameter ratio of
0.5 and are presented in the form of streamlines about the spheres.

The investigations described in this report were carried out at the David Taylor Model
Basin under NS 715-102 in connection with a program investigating gas-bubble dynamics. The
study dealing with the motion of spheres in a still liquid was first presented in thesis form'S
16 The results pertaining to the motion of spheres
within a moving liquid have been presented in abbreviated form. 17

and subsequently in sbbreviated form.

METHOD OF SOLUTION

The motions considered here are assu:ied to be sufficiently slow so that the Stokes
equations of motion are an accurate description of the flow. For the steady, axisymmetric
motion of an incompressible fluid, the Stokes stream function exists and satisfies a fourth-
ordee differential equation. Corresponding to the two boundary shapes (cylinder and sphere),
solutions for the stream function are obtained in cylindrical and spherical coordinates. In
cylindrical coordinates, the dit’orential equation for the stream function is:

*It is known that drops snd bubbies below certain critical sizes depert from being ‘‘fluid’’ and become “‘rigid’’
in their behavior. (See, ¢.g., the authors’ investigstion on the motion of gas bubbies, Reference 11.) It is not the
purpose of the present investigation to deal with this traasition phenomenoa nor to determine the conditieas st
which transition to ‘‘rigidity’’ tekes place. It is intended to give the wall effect for those droplets or bubbles that
behave as fluid bodies. For those behaving as rigid spheres, the wall effect for the rigid cese epplies.



2 2 3|
_2_,,_9_. — ] 9@ p=0 0
dz? dp? P Ip

It will be shown that a solution of this equation (for the case of symmetry about the horizontal
y-2 plane) is:

¥(z, p) = J (oK, (ap) fla) + p2 Kk ylap) Fla) + p 1, (ap)g(a) +p? 1, (ap) G (a)} cos azda (2]

}n spherical coordinates, the stream function satisfies the differential equation

9% 1 - cos?0 32 2
, + ¥(r,6) =0 (3]
a9 r? r2 d(cos 6)2

a solution of which is shown to be

1 _
¥(r, 0) = Z c % (cos 6) E e +8B, —-—l+C ~t2, D, 1’] (4]
| 2t )

4
hacvon
where z,p; 170 are coordinates,
C ;’” is Gegenbauer polynomial,* order n, degree -4,

An, Bn, (,‘”, D“ are congtants,
lor 1 Ko Ky are modified Bessel functions, and
f(c). F(a), ¢(a), G(a) are arbitrary functions.

For the satisfaction of the boundary conditions on the cylinder walls, the cylindrical coordi-
nate solntion for the stream function is used. The expression thus obtained represents the
flow inside a circular cylinder, not as yet fully specified but satisfying the boundary condi-
tions on the cylinder. This expression is thea transformed into spherical coordinates. By
comparing termwise the constants in the above expression with the constants in the stream
function expansion obtained directly in spherical coordinates, a relationship between the con-
stants is obtained. The boundary conditions on the sphere yield a relationship between the
constants ia the gphetical cocedinate solution. Substituting the previous relationships into
those obtained fvom the boundary conditions or the sphere, a set of linear algebraic equationz
-for evaluating the constants is obtained.

*The liret tea of these pelynomials have been evalusted in Appendixz A

4



THE STREAM FUNCTION IN SPHERICAL COORDINATES

The Stokes stream function in spherical coordinates (Figure 1) satisfies the fourth-
order differential equation (Reference 18, p. 393):

2

32  1-cos?s 3¢

+ . ¥(r,0) =0 (3]
3r? p2 d(cos 6)?

A solution of the differentiai equation is sought in the form

¥-¥ 4V, (5]

sechthat LY, ~Oand LY, =¥ (i.e., L2y, =0)

9t 1-¢2 32
vhere L =| + and
a9 r? P2 32

t = cos 9,

The solution is to be single-valued and continuous in the given flow field. Assume a solution
for LY, =0 exists in product form; i.e.,

v, (r, 0) = R(r) T(e) (8]

The second-order partial differential equation can then be ssparated into two ordinary differ-
ential equations

PR -a2R =0 N

(2 -1)T”-a%T =0 (8]

where the primes denote differentiation with
tespect to the argument.
The solution of Equation [7] is:

() = ¢, ™ 4 ¢, pmtl {9}

1 1+4a?

where M = '5* )

Figure 1 — Coordinate Systems



The =olution of Equation [8] is:*®
T)=CFR )+ ey F () {:6]

o | -
where (' # ~ Gegenbauer function of order ar, degree -!%, and

1% ~ ala-1),

Comparing the expressions {of m anda, we obtain m =a. Hence

¥, (r,0) =(c r®+c, ™ NCT" + o) Fy) (1)

1 2

The solution of the equation LW, = ¥, is
‘!’2 =‘l’1 +‘l’p [12]

Assume the particular solution Wp in the form S{r) T (¢), hence

2§ —ala-1) §=r2(c, 1%+ c,r" %Y (13]
and
S(r) = r? (c r¥+ cgr —arly )
Therefore
v, = (CJ"’* vy k) le, a ¢, oty e, rm® 24 e rm Y [15])

Summing the above sclution and using integer values ofa, the expression for the stream func-

tion for axisymmetsic, slow flow in spherical coordinates becomes:

¥, 6 = Y e () (A r+B ™M o0 24D YY)

,& » ' L ] n "
0
[121**
[
2 F {(r) (‘1 ‘e 8 ’r‘l+l *(: "l§*2 + D , —.+3
: P
2
- 1
*The solution c"‘i - ( P,) it given in Reference 19, p- 329; the second solution is & =~ ——
7a-1 @-2" b

(0. 2 0 e MQ {t) = Legendre function of the second kind. C'*hnn singuisrity st ¢ » X G e, fi= 1)
enxcopt for a« integer. F hos ningularities ot ¢ =21 (re, O=0, m) for all values of a.
“ﬁvkm gives & svlution for the streew function in the form

"Sﬁ"‘%(‘ I ‘s -nt1 C" ”I*D 'ﬂ’f-"
2

«
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Pisimog i 0p) ¢ &K ' - lo8)
thers [, (ap) io the muditied Bussel funclion of the first kind, fa R xdor, md

K (ap) is the moditind Baess: function of thy seconrd kind, first order.
fAaerce

!ffa fe ,pf, foph v 52X «ﬂg.)I f ;:{fm;;s 122:&1\;& ag]  {26]

*

¥ or. f‘* v, ﬁ we aﬁum

¥, =(c, +c, ,_*) (cg+ced) | (21}

The psriiciier solution of LW 2 ™ “’i"i is sought in the form Q (p) Y(z) bonce

)

Q- -q-- a* 7 » constent. P | - (28]

A selution of Faustion {18] 1s given by

. ) - i - ) . ‘
, . i . o 4 s 0 BV . [ )
AR R ) ‘ Ly Co to '

| : ' S - ’ C ‘,f: o - - —— )
ST S £ D A T (28]

7 / e ‘ R T e \
RUZYEES f‘m Ko} uﬁ(t ulx»‘w,m «?w‘m nabation vkl A e ff«l rie. mﬁ'm Al ,z)i B CHeh 3

i

9‘?2. wloy 0?1, (a0) + o p? K lap)) (o, ron w4 ¢ 5ic a2) - [s0]
Kot~ = G, we obtain

Y, « c9p" (c‘.i + 6675,8} ‘ | [81]
A solution of Equation (1} Is thas given by
Y - (—cs_p Iy +cgpB +cgply + cg0” K ) (e, cosaz + o, sin .2) (82}

where |, I,. K, uid X, sre used in liew of / (ap), I, M,w) K(, tapk Bk A " {:p). Since the
,soluuon hcolds I‘m 'Y posmve nlm ol a, ihe inte ;«d fuem

(33]

iz alop & solution of Equation (.

" 'h.: op feu.ti-en)x uc!ootnlmhnda‘if hl}, |

’



Thus lewting ¢, ¢, = 9, r(a);, cyeq=fila)cicg=G (a),cocq=F (a), c,cy=g,(a),

c,¢q = [,(a), £)Cy ™ G,(a), and ¢, ¢, = £ 0 the expression for the stream function in cy-
~ lindrical coordinates becomes:

Yz, p) - lo& 7 4 + 2302 F L0 - ol g, (a) + p*1,G,(a)} cos azda
o 0 . )

A BRCLIACE prKFyta) + pl g (a) + p?1, G (a)} sinazda  [34]
Jo

+ kipi + kz,p‘ + k;Jpzz +k, plz+ ke PN ks_:p:zz +Ic.,,—33 + kg2

The terms containing /(a) and ¢(a) satisly the second-order differential equation (L ¥ = 0);
the F (a) and G (a) terms satisfy the fourth-order differential equation (L2¥ = 0). The arbitrary
functions f(a), F (a), ¢ (a), and G (a) are evaluated from the boundary conditions of the problem.
From the relations

1 dy

v m-— —

* p dp

(35}
I a¢

P e 0z
the velocities in the axial and p-direction are obtained:
%
v,=| laK,f,(a)-(2Ky-apK ) F (a)~alyg,(a)-(21,+apl) G, (a)] cosazda
P”

+| {aKy/,la) - (2K, -apK,)) F,(a) - alyg,(a) - (2], + apl y) G, (a)] sin azda
“o

-9k -4k p? ik y ik, g gr 2P

- {36]
v, -j (K 1 (@) + pKoF 6t « "z o 54 plyGyla)) asin azda
‘o

+ S (K, 1,0 +pKFr(@ 1 9,0 +plyG,(a)] @ cos axda
0
1

3 [ & P ¢ P P



i iy i e e o

e e

.

The expression for the pressure field is:

b= -2 j 1,6, (@ + Ko F, (o)) asinazda
“0

(37

S R T

76
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THE MOTION OF SPHERSS IN A CYLINDRICAL TUBE
A. MOTION iN A STATIONARY LIQUID
1. Rigid Spheres
e. Exoct Sg'lﬁntion.; The first problem considered is the motion of a sphere within a
still liquid of finite extent, as occurs when a sphere rises or falis under the influence of

gravity. In this section the axial motion of & ngnd Sphere inside an mfuutely long cylinder
Wlllbedanliwnh‘ S S L ,

For convenience, the coordinste origin is taken ¢l che center of the sphere and the

cylinder is assumed to be moving at constant velocity U in the negative z-direction (Figure 2).

The boundary conditions are:
at the cylinder walls (p=3): o =~-U; v 5= 0O o ¥ :41;- b2

at infinity (z = 2w): v, ~-U; v,=0 (8]

on the surface of the sphece (r = R): v, = 0; wvg=0

The case of a sphere moviﬁg at constant velocity U is obtained from the above by superimpos-
ing a uniform flow with velocity U in the positive 2-dirsction.

Since the stream function is symmetrical about the y-2 plane because of symmetry in
the boundary conditions, the stream function in spherical coordinates is given by

Y, 0) = 7 2 C Y (cos 8) ( A ™ B —l‘ + C /o2 + D —1—) (9]
v - =3

‘mmﬁm-ﬁhﬁmumcmﬁtm”” ser (neglocting say unstesdy offects) is

~onsidoved in A




NGRS ENINNT

(OTTITITITTI0Y
‘Equivalent System: Sphere Fixed; Tube Moving
at Velocity /. Uniform Velocity U st Infinity.

Figure 2 — Definition Sketch

Sphere Moving at Velocity U in 8till Liquid
Inside Fixed Cylindrical Tube,

The boundary conditions on the cylinder walls can be satisfied if we take the stream function
in cylindrics] coordinates as
Yz, p) = J' (oK, (ap) [, (a) + p? Kolap) Fyla)+pl, (ap)g, (a) +p? Io(ap) G, (a)] cos azda + % p?
° {40
Utilizing the boundscy conditioas on the cylinder walls (Equation (88]), we obtain the follow-
ing ceiations:
from ¥ = _L_i_ b?: bK, (ab)f i;ﬁ(a) + 82K () F,(0) + b1, (ad)g, (@) + 3 1,(ad)G 1@ =0

)]

fromv = -U: —ak, o (@) f,(a) + (2K (abd)-ahK, (ab)1F, (a) +al,(ad) ¢, (a) 41

+[81,(ad) + 6b1, (69)1G, (@) = 0

*The integrel contalning “vinas’’ (s net o

. R



We can, therefore, solve for g, (a) snd &, (a) in terms of /, (a) and, ¥, (a)

o 1L {ad)K,ieb) + 1 (@b K (ab) \ )
gyl = - ' f(a -—— plz(a;},,,
1 2iab) - 1, (ab) 1, (ab) a I’(cb) 1, (ab) 1, (ab)

[42]

' 3 I @BK  (aB) + 1, (@K, (ab)
- 1 | ‘ 2 0 ,
G = el fyla) + i l -— F‘(a) |
(ab)? 12 (ab) -1, (ab)l taiy 1.2(ab) - 1, (ab) 1, (ab)

where the f{ollowving relations for the Bessel functions have been used:
Iy(ab) Ky (ab) + 1, (@D)Ky(ab) = — and 1 (ab -2 (b

Let |
l, (ab)K (ab}+l (ab) K, (ab)

S, =~

[l (a3))? -1, (aé)l (ab)

a 1 pn
. L
(ah)? i, =2 - 1,%ab) I, (ad)

Sy =~ - . {43}
-y (ab)]’-l (ab)l (ad) —

A (ab)k (a6)+l (ab)k’ (ab)

i, (ab)]’-—! (ab)l (ab)

Utitizing [, (ab) K, (ad) - 1, (ab) K (a¥) = , W& obtain

(ab)?

g,(a) = ; 4] f,(a) + 8, F, (a)

L(ab)2 b |
{44]
Glif:l,- S, /l(a)*s F {a)

Thus having satisfied the boundary conditions on the cylinder walls, the stream furction
becomes

13



¥(z,p) 's toK,(ap)f | (@) + pzl\f o (édp)zPl (@) +pl, (ﬁp):[&x fla) + 8, F‘l (a)] +
o (45)

+p? ly(ap)(S, ! 1 (a) + §,F, (a)}} cos aeda + Ye

-

In order to transform the above éxpression into & form amenable to the satizfzstion of the
‘boundary conditions on the sphere, let -

, ,/1 (a) = E a, a® ‘ Ff(a)' - E " b. a® [£¢6)
1 ' 0 7 )

The integrals p’[:l( o(ap)a" cosazda and o [: K, (ap)a* cos azda which then result are

evaluated in Appendix B. It is shown there that only odd powers of a for » and even powers
of a for b_ are of interest here; otherwise discontinuities result at 6 = 0, «. Thes we obtain
from Equation [40]

Piz,p)= J' pK, (ap) (a,a+ a, a3 + ag a+...)cos azds
o,

+| #'Kola0) By wbya® 4 b 6t 4. ) cos azda [47]

2
+| lplap)g,(a) + p? I (ap) G (a)] cos azda + Ve

The integrals containing /, and /, can be expanded into a Taylor series about the origin. The
convergence of these integrals is assured by the form of the functions g, (oY und €| (2}.#
A function ¢ (2, p) can be expanded by Taylor’s theorem into

$(2,0) = $(0,0)+2,(0,0) + 5, (0,0
*51 (22¢,,(0,0) + 2294, (0,0 + p? B, 00N + . ..
s .0 ® ;-! [ é,’ (0, 0) *( l);. P’Z’t’.-‘p (0, 0) * o000

("o (0,0) "¢ (0,00
’ p 6x._!p' ,0) + oo s ¥ ;P dp. 9 V7, *. & -8

wheve ( . )m binominal coefficieats.
r

14



Leet
- ¢(z,p) = s lot,(ap) g, (a) + féiloffdé)'fcf‘ (@)cosazda 487
o

" He=nce

6 .0,00=0

ép,_ (0,0) =0 e odd
b pp (0,0) = f lg, (@)a + 26, 7(0){;} da
‘o
ép‘ (0,0) = "" (3/2 9,(a) o’ +56"G'l(a) e?) da
| ‘0

| o

¢ n o(0:0)=0 n = odd
& %

= (-1 ’I (same as in ¢ ) a"da " even
| [
0

Lest
¢ - “" y,(d)a +2G,(a)) da  =- j S,af,(d) da + f (8,0 +28) F, (a) da
o ()

v, (a) 6 +26G, () 6?da =- s 8,a%/,(0)da + S (S,8+28)0’F, (e)da
° ) “o

r
“7)

a ‘j lg,()a +26,(0)) &2 da = f S, (c)dc*s (8,6 +28,)6* 2 F,(e) da
] ] L}

- - - (49}
( ¢, (e) a® de .S 8,4%f, (a)a4s 8,0°F () ds
Jo Jo ¢

4 - 5 G‘(t)l"’*ﬁ a j 85,87 (a)das \ 5,75, (0 da
‘e iﬁ

15



Hence

1 1 1 ,[3 \
] p I Y Y 3 ! 4 7 ) 1
: Q‘J(?,p)'gp a? +‘Z' T p ’("ﬂ‘)f"% 5;9 ‘(-{2'03*38‘) T e e

1 , 4/ 3 1 | 1 (15 15 '
+ — 2} _Za -38 )+ — £*pla + — pb|—a + — B, | {50}
P( 6 5), 48 ~ P % YA i

6,p2’-a )+,

+ — 22 6 (__. —ay - — H“) — 2‘94(3- a.*aa,)«p 1440

N EEN ad 4+ ag a¥ +... and Fy (@) = by + b, a? 4+ b a* + ..., Cquation [47)

is thus transformed into

Since f,(a) = a

7 APV l;2u "y 360::,_% 7 _% '9177_ - e,
‘[’-a—-—C -'(13, 3 04 +as S 06 - e *bo,lfcz 46?-5-;-02 -52 ‘g-;'c L

21

' -5 S,(a, a? +aaa +..0da+ | (S a+28)(8,

8,0,0% +a,0%+ .. Nda- | (S,a+25) (b, + 5,0 +.. ) da| +
0 do

i51]

-4 .-3S 3 : ] 3 . ) '- 3 |
+—p 1 13S; "':,:54"' ‘('“1“ +a,a 4 4es ) da+ 2 S a+6$ (b a? +b a* +...)de| +
Lo 7 ' 0 '

e
—

AU T — (/s . ) M
(-382 + ~2- ,S@ a) ta, ad+ a, e +...)da -s (-i- ssuos‘) (boa"+b¢246~§-. JDda f+...
, o 7

From the solution in soh;ricnl coordinates (Equation [39], we obtain (making use of the relations
p/r = 8in 0 and z/r = cos O):

' 1 1 ' \ 1 ) S
"-C} (82-7&02?)#;-0 A f!’p (—A %-C,)**P ("‘E'A4§‘§82)
; A +-§-0‘) i‘p‘(— ﬂ'fﬂ‘)

1 s) ig,&( b Ay _c\ [52]
§ 4 }
5

Y (B‘ -1? +D, -1-)1 22,4 (-e : A‘ G ) + 24 92

d1 , 3 1 ,
- A - 3 , 4 T v ~

IC



By compating Equations [51] and (52}, the foliowing relationships are obtaiaed between the
constants A_, B_, VC,", D, and g, b: : '

B, --(1-- + 16} )n

241t EICES A
B, =(-1) [T_,’ a1t 2(@n + 1) b‘] )

Dt-—b'

8 .
-t} n!

p, =(-n? SEH b_,* (53a)

'A‘,2 ~a,+U

Zeir e, 8,
A =2 |— s - 3
. [a-21  (-41@2x-3) |

2 3
~+1 B A+

¢ =(-D? , Y
. =21 2n + D

" To facilitate the onlumon of ., and 6.,

S, (ab)® bd(ab)

S 5y (ab) — d‘“")
0

f S (ad)® d(ab)



e e

This results in

S » S ne+2 s:#ﬂ-l

i v .ok "ma S ——— " @ 0

bl +3 -~ ,bl*ﬂl

a =-0 -—-——'a
ket 1 bl+l 3

1 | 1
4bg = Wi 22827 4 b, —-(S'“+2S')+...+b_
pr At o=t

(s;+ﬂ-t 425l+ﬂ 2) .

S;l-l s 41 S ;4,.-2

3' ﬂal *63 +ooo+'a +—ool

b_uv‘:l . bn+3 - bnﬂi&

S:" | S: | S;”"""’
+ bz R

4 — . ” - ewe
» bl+l prtm=1

+6°

'bl'-l

A number of the S ; and S : integrals have been evaluated in Appendix C and are tabulated
in Table 3. Thus we obtain
6.555072° 15.3046 A3 " 4.40808)  4.76313)°

2 2 1 3 o 2 ‘
R® R® R R

4.07765 54.7950 . 1. 07050 11,
- 5" 2Sa +-—-0A7aa+...+ - 36 + m
R

Vo s RS
a(n-1) ] %
A _(_1) 7 srém-l s-ﬂ-z xu-a-l
z (5-2)' 5 (0-2)'(25-3) R"*‘

wl2 [ A i
AC (58b)

N Ty | 1 , slﬂt-l* 1 81«-2 | _GL_ xnh' ,
2 vy | -2) B-01(Fn-3) 2 | g2 |

--‘ ;Jp e

AS b 4eae

T P\ 1.2\ 1.31101A°%  3.000082°%
C’fz » ‘..aw‘-q“—.'——gl + p— 03 ¥ o006 P = ‘o & - : .,1 $ees

7 Py R

— r*’ 2 - 1

o (=)@ 1|
g (n-2)1(2n )2_ ... eo.1,...

-#l 1 1
O(-l):

. dismeter of sphere
® Srasterof cylildct

wh
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'o. Gegen::auer ud Logendre polynoma[s * we obum

A. R*% & B,.

from v' -0
i Rl#l

from v 0" 0: A‘A' R*-2

Rl+

Solving for A_ and C,_ , we obtain

-+ C R‘+D
. 'Rl-l

| 1
(u l)B -—--+(n+2)0 R'-(Q-S)D

2n-1

2n+l 1
4 = - - B

. . 2 . 'R’..‘ - 2

2:-1, 1
: B

+ -

2n-8
2»70

» Ran+1 Q2

-0
| (54)

=0
7 Rl-l

1
D —
» Rzlj"'S
| (55]
1
R?.-‘

Substiiating the expressions for 4 o’ 8,C,, D. as given' in Equatioas (58] into [55), an

infinite set of linear aigebraic equaiions is obtained for determining the constants a4, a,,...

&nd by, fbi, ves?

R \2

- \¥

RS
from 502::?

b ,x b, , % 115
_R‘_’(:;’_, -3.55501;3)4. .i (3 - 15.3046 A%) + .-‘-(

from ,&,"r

3 . ,a G
() 2 (42 e 1

—f,o-' (-1.0705¢ 2 . —-(—- v -11.9278 X’) ¥ ooe ==

from C e

b b, , a,

8.
v‘—:-(-o.w?@znxs) + ;;- Cr-T4300)\) +... = (~3.3658977) + — (42# -~ 37.53812%) +... =0

P5

,‘I;

b Ce-1
*mc K a0 mps = ) s

L %)s!

Prozue <o aps re—
- ' 2a+1

19

5% /3 k! ‘_ % 18 WL PP
—(- v - 4.40806 x)+ — (- 4.T63152%) + ... _,(.5. » - 8.55507 ) ¢ — (-15.30461%)+ ... =

RS

- 1,1.0mx’) +— (~00.5861AT)+ ... =

RS

i56]

(~4.0T7852%) + — (547 -54.7950A7)¢ ... =0

B’S

RS

-U

0



from A

@n-at ¥ _, a-Da b, . 2 [(1 cuimmr, 20D ]
4On-3) pat PRI <O ) [ e R O TCT e B |

”w' i,[’t =y | =

b ‘ ~ ' 1|
R emel (2”*1)"' 4"" Yy |- Lpe— 1] qaim=2 |
oy L T B P L [

M. g,i g4 5v i

a_
[ 3

”-{d

AR‘FR =0

[56]
feom C”:

0. Suh

_’_‘_1 bl*—2 . 2 nr-;lf)na(fn,-l)n% bn y- Z bm e} ” Arm+l
4 pa-1 42n+1) pa+1 ot +1 (n=2)1(2n+1)
R 2n+1) Las e gt (n @2n+1)

.« ' gfll‘éfu

on_Tynl G _ , a
4 R L/ pm+2 (n-2)1(2n+]) a

",lv.'sy,-"- .

The constants a_ and 5 can be evaluated numencully to any degree of accuncy by mcreasmg:

the number of equatlons utilized.

The solution for the strexun: function in spherical coordinates for flow about a sphere
in an infinitely long cylinder is thus given by Equation [39] with the constants 4, B, C,
and D, given in Equations [53]). Using ten quations of the algebraic set (Equations [56]), &
sufficient number of the constants s and b was determined for a diameter ratio of 0.5.
Streamlines were then evaluated from Equation (39]. They are shown in Figures 3 and 4.
Figure 8 shows the relative motion about the sphere; i.e., the streamlines as they appear to
an observer moving with the sphere. Figure 4 shows the absolute motion about the sphere;
i.e., the streamlines as they appear to an observer fixed in space. Velocity distributions
at the plane of symmetry and streamlines for the motion of a corresponding sphere in an infi-
rite medium have been included in both figures.® |

*The expression (or the stream function for the motien of rigid spheres ia sa infinite medium is:
L | 31 _3 ) ~r
¥(r, @)y =— sin“ 0 (l;r 4o IR = == URr. relotive motion
2 ‘2 r 2 /

Y0, 0)=— sial @ ( 013 --—UR t) sbeelute motion
2 2 r 2

o oblie 6

" W g o
»
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Sphere in Circular Cylinder, Diameter Ratio: 0.5 ' Sphete in Infinite Medium
Figure 3 — Streamlines and Veiocity Distribution for Rigid Spheres
{Exact Solution); Relative Motion

The drag experienced by moving spheres can be evaluated by integrating the forces
mcting over the surface of the sphere. Thus

Drag = [p oslnGrIS fp 006049 57}
, , Tangential Dr.( Noma Dug
where p, g is the tangential stross,
p,, is the normal stress, and
dS is the =urface element.
"The deag of the spheie can be obtained from the stream function and is shown in ; =, ondix D
%o be equal to

Dug =~4dwyu Dz, -ty by o 58]

i.6,, the drag is prof

ortional to the coefficient D, of the stream function expansion. Defining
awall envvection factor (K,) as the ratio of the drag of the sphere in the bounded medium to

21



Sphers in Circular ylinder, Diameter Ratio: 0.5 Infinite Xedium

Figure 4 — Streamlines and Velocity Distribution foe Rigid Spheres
(Fxact Solution); Absolute Motion

that in an infinite medium, the drag can be expressed as

| Drag=  (SruUK K, (s9]

Also, combining Equaiions (58] and [59], we obtais an expression for the wall correction
factor in terms of the coefficient b :

——— = (#0)

Wall correction factors for rigid spheres moving in a still liquid inside an infinitely long cyl-

the coefficient by over a large rangw of dismeter catioe. The number of equations of the alge-
braic system used was increased (at most up 15 i M) ©iii only very small chaages inthe
value of b, were obtained. The computed wall icrrweiion #:ctors are shown is Figwe § and

S e e e
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Correction Factor, K,

Figere 5 — Wall Correction Factors (K')) for Rigid Spheres Moving in & Still Liqy
Inside n Cylindrical Tube
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TABLE 1

Wall Correction Factors (K,) for Rigid Spheres Moving in a Still Liquid
Inside a Cylindrical Tube » R e

R T Atoxmm]'m — 1

00| 1000 | we | e
[oa| 1263 |  n3 | 000
lea| 1es0 | 1.680 | 0.00
03] M 23 | - 0.04
{04 3596 | 3.582 - 0.39
[os| 590 |  sen | - 166
| 06| 11135 10.591 | - 4.89
|01 24955 | 21406 | -1.22
| 08 73585 | 48.985 | -33.40

Table 1. Previous theoretical results by Ladenburg and Faxén are included in Figure 5. Ex-
‘perimental data at very low Reynolds numbers, taken from Feferences 9, 22, 23, and 74, are
also shown for comparison. Only experimental data at Reynolds number {based on diamcter)
less than ‘wo were included. The actual extent of the "Réyndld‘s number range over which the
theoretical solutions for the drag of the spheres are valid could not be determined from avail-
able experimental data. It is estimated, however, that the ;thmti’c(l solutions are relicble
for Reynolds numbers up to two. B N
b. Approximate Selution. A very good approximation for the drag of the rigid spheres
can be obtained by re,hihfizng only the first two equations of the infinite set (Equation (56])
and considering only the constants b, and a,. For the constant b, we ther obtain
o3, 1-0.75857A%

—_—=-

B 2% 1 _91050A +2.08652% - 1.7088 A + 0.72603 A®

[e1]

Using the definition of K, (Equation {60]), the wall correction factor for rigid spheres in a
still liquid within an infinitely long cylinder is then givea inthe convenient form:

~1-0.788572% | o

- S [e2]
1-2.1080 1 + 2.0865° - 1.7088 A% + 0.72603° |

i Kil’ =

*Lodosburg’s solutiea': K=14+4242

Poséa's setwion?: K= :

1=2.106) + 2.092% - 0.95 A

%

a3
!
|
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Wall correction faciura giver by Equation (62] have been evaluated and are included in Fig-
ure 5. In Table 1, wall correction factors fur the exect and approximate solution are listed for

~ comparizon. It is seen that the wall correction factors for rigid spheres is well approximated

by Equation [62] up to diameter ratios of 0.8. ,
In this apnroximation the stream function becomes

=R (o)A, P +B,f} + Gy 4+ 0,7) + O (c0m 0) (A1 + €Y + ... (83]

where

82 ‘al' 8‘9861 ) =0

7 Dznbow D-,Q’D,G"""o

‘42 = -4.,40866 — A - 6.585607 — N /]
2 » 2

, y ’ .y
- 1 . ain-1) aA 0
Yn-2) 3 * n-2)12n-3) ¢ ] RoT

2+

A =12

Bt |

+] - l Sh 4 — 1 | Sn-l:_f_ Aty

C, = 1.31101 — A + 3.57488 —S

7t L ! % art es 0 a1
=D R r=-2102n+l) ( Ry YR e )

In the solution given in Equation [63), all boundary conditions on the cylinder are satisfied.
The velocity components arising from the C;“ -terms satisfy the boundary conditions on the
sphere. Those from the higher terms (C.’", «ee 5 €lc.) do not satisfy the boundary conditions
on the sphere. '

Streamlines were evaluated from Equatioe {63] for a dinmeter ratio of 0.5, and are shown
in Figure 6 for relative motion about the sphare; i.e., as they appear to an observer moving

with the sphere.
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Sphete in Circular Cylinder, Diameter Ratio: 0.8 youn of Velecity Distribution

Figure 8 — Streamlines and Velocity Distribution fcr Rigid Spheres
(Approximate Solution); Relative Motion

2. Fluid Spheres

In this section the axial motion of a flwid body inside an infinitoly long cylinder will be
considered. For the motion in an infinite medium, it has been shown that the sphere represonts
s poasible surface at which all boendary conditions are satistied. 1213 It will be shown here
that the assumption of » spherical shape does not lead to aa exact solution for the motion of
a fNuid body inside a cylindor. However, all velocity and stress comporaits arising from the
fiest group of terms of the stream function (the 6‘;" m) tio udary the bowndary coaditions
on a sphere. Hence, for the case when the C ;™% torns are most importast in d --;;:g...g the
motion, the spherical shape will be a very good approxi
to the one for the rigid cane will thus be obtained. ;j‘;g -alidi
by experiments.

¢ system is

e, Theoreticel Soletien. ililﬁlﬁﬁ‘tﬂ(gﬁii
ken atthe conter of the Nuid body. The bundary coaditions ¢

e F o S




at the cylinder walls (p = 3): v, =-U v =0
at infinity (z = Ze): . ' v =-U v, =0
at the surface of the fluid body: CERS
Equality of tangentinl velocities,
Normal velocities vanish (i.e., no diffusion),
E(iuality of t.angentinlﬂ;;nd normal forces.
For a spherical surface (r = R), t.he"boundary conditions of Equatic”. (k. e he ferm:
1) uy=v,
2) u, =0
3) », =0 3

) (,0), =7,

i

5) (P,,).Ei+ yigR cosf=p ~ygRcos

where u_is the radial veloc:ty ms)de sphere,
ugis the tangential veloc:ty inside sphere, and
i refers to quantities ms:dp sphere.

The stream function in the exterior of the sphere is giv ~ -

Z‘ R
Vir, 0) ~ C‘V’(ccse\ (4 A B, —= 4 C 2

n -1

in the mtznor_ of the sphere by

¥, (r, 0) = 2 C* (cos 6) (E, 2" + F, 7YY i

o

obtained st the eomQr of the sphere.

nodE iLe,,

1~ 0, 4.6,...) [19)

ar 0 ) 8]

) From the above expresslons !or the stream functxon ar . onyores: . of velocity cor.
ponents (Equations (18]) and stress component.s (Equauon -5' and 1), we obtan:
*The ygRcos 9o 4 y;¢R cos 0 terms take the difference i, ! Anstacie ressr. s e ocr ynt. (See
F! cure 7.) ;
**The constants sssociated with the l/r"‘x ond l/r""3 terms - MO W e D re Y oo wnuld be

7 Best Available Copy
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H
K
i
{
i
1
i

el

2
B, e

SEEEN [V J. oK (ap) a,a cosazda + j  p? Ky(ap) by comazda
Rt : | (69]

“ " : " 2a :
N o *.,‘ Phier [( 5?2 s -S‘] a8+ 88 b+ 9?4 (ap) (‘sz“x"‘ + 5, bf)cos azda
e R} ad)* | o VR 0

% In spherical coordinates it is given by

®

R 1 : A % .
Co ‘y(r,o)x(,';%(coso)[A2r2+82 +02r‘»+02r]+0:”(c036)[A‘r‘+04r5]+...[53]

A / .
>
Ly

. From the bounaary conditions on the sphere (Equation [68], n = 2)

1
7

(ro1°

external viscosity

where o = — - —_
internal viscosity

Substituting expressions for 4,, C,, B ,, und D, (Fqustion (63)) into Eyuation (70], two alge-
" beaic equations for a, and b, are obtained

oA apecial set of equations is ebisined for the case o =1, nomely:
| 4y +Cy R 42D, 120
14Cy 420,07

r 3
RIS o ]



b a
Yo [3 1-2/8 A ~ 1 /8 1
22, 1-280  aoseen)+ (20 L _ess5012%)--v
R \2 -0 ] R3I\2 l-a
{11}
b e - @y °
o (5 1 15 14+2/30 o
—{=nr —— -6.55507A%) + — (-—- " A 17.87332°%) =0
R\2 1l-o R3I\2 l-0
From the above equations b, for eximpl’e, becomes
;6_92 _ 3 1+2/3ro p
g 2m 1o (72
1-
1-0.75857 — - AS
7 7 B F/ o B e
1+2/20 1  1-2/80 , . _l-o0
121050 2%\ Lo 0ses — % - 17088 L2375, 012608 L2 28
l+0 l+o0 l+o +o

The constants b, and @, as determined from Equation (71], when substituted in Equatio: {63]
will yield the xterior stream function for the fluid sphere. Inthe interior of the sphere the
stream function can be given as (utilizing velocity continuity):

r2 ¢ o .
¥, (r, 0 = C;% (cos 0) E, 1 '(1 - -=2-) + 0% (cos 0) (A '+ O r"y v .., (18]
22 ) '

Streamlines for the jaterior and exterior of the fluid sphere were evaluated from Equations (73]
and [63) (with coefficients b and a, determined from Equation [71]) for the case of an infinite
viscosity ratio and a diameter ratio ot 0.5. They are shown in Figures & and ). Figure 8
shoivs the relative motion; Figure 9 gives the absolute motion. Velocity disiributions at the
plane of symmetry and streamlines for the motion of a corresponding sp’heré in an infinite
medium have been included in both figwes.*

Using Equations (58] and (72}, we obtain

1+2/30
Drag =6 w y R ——— K,
l+a :

- v 4

" Drag in Infinite Medium

-

(14}

*The stream function for the motion of fluid spheres in an infinite medium is:

g 1 1 3 14273077 7\
V.0 =% sinZf U+ % UR? — -~ = UR - — r] ’ r.0)= %!inzﬂ[- — 72(——- )]
i L 140+ 2 140 2 140 Rz ;

Reistive motion

F .11 3 1430 ) _ 7 2
U, 0) = Y nia20| % URD —— - = = YR —— '] ";md)s%m%[w 4= --r’(--q]
' U 140 2 1v0  J |

1 140 K’
Absolute mohon

31
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Figure 8 — Streamlines and Velocity Distribution for Fluid Spheres; Relative Motion

where K |, the wall correction factor for fluid spheres moving in a still liquid inside an infi

nitely long cylinder, is

1= ,
1 -0.75857 ———— )%
1T 1+2/3¢ T 1-2/3 " 1-
1-2105¢ ——— / "n 2.0865 ~ 2} -~ 1.7088 _.2/3" xsiko‘?ggog_l_.." AS
l+o l+0 l+0 lseo

-

hm’

Wall ‘correction factors have been evaluated from Equation [75] and wre given in Figwe 10.

Cwrves for fluid spheres of viscosity ratios 0 (rigid case), 1, 13, and = are shown,

s {ea].

sFor g = 0, the exprestion for Ki: reduces t¢ that of Rguatie

ol

Propn

AL e ot o R S Ve e A *9*. g ~

o



A o < R A Aok S W ol

A Cylinder
Woll

Viscosity Retior wo

VA

Figure 9 — Streamlines and Velocity Distribution for Fluid Spheres; Absolute Motion

i

Sphere in Circular Cylinder, Diameter Ratio: 0.5 Infinite Medium

b. Experimental Work. To check the validity of the theoretical solution for the drag
of fluid spheres and to ('atermire the deviation of fluid bodies in a cylindrical container from
the spherical shape, a limited number of experiments was conducted. Tho experimental study
consisted of determining the rate of fall and the size of water-glycerine and Dow-Corning 200
silicone drops in caator oil. The DC 200 corresponded to viscosity ratin of 18, whereas the
water-glycerine mixture (about 45 percent glycerine) gave s ratio of abowt 200. Two cylindri-
cal Lucite tubes were used, They were 1.24 in. and 2,74 in. in internal diameter and 36 in.
and 31 in. in length, respectively, The drops were generated by mesns of s stopcock bereile,
the tip of which protruded into the castor oil.* By regulating the stopcock, drops of different
size were mleased. Large drops were used 10 assure that they behaved as “*Muid bodies."’
The fall velacities of the drops weee determined by menns of » stop waich; the size and shape

*The wse of & miﬁﬁlh@rﬂkﬂmﬂﬂiﬁ Wﬁﬁiﬁ%ﬁiwiﬁmiﬁc
i ‘ sitry malies within he
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df the drops were determined from high-speed protogra;iiis. Siativnary steel spheres of various
known diameters, iocated at the center of the tubes, were photographed to provide scale fuctors
for evaluating size and shape. The temperature of the castor oil was deterrisi=d. at frequent
intetvals, by means of an immersion thermometer, The viscosity of the liquids was measured
with an Ostwald-Fenske viscometer, and the density of the ! i~ « 25 obtained by means of
a Westphal specific-gravity balance.
The experimental drag of the drops was determined from the eyuilibeium condition of

the forces acting on them. Thus

Drag = Volume y, ¢ ~ Volume y ¢

s

s
v ——t

Weight Buoyancy

The experimentally determined drag can be compared with the theoretical one given in Equa-
tion [74]. To obtain the experimental wall correction factors, the experimental drags in the
cylindrical tubes were divided by the drag of the fluid spheres in an infinite medium. For

) , ' . [ volume \1/3 ‘ _
deformed drops, an equivalent radius [= ( an ) ] was used in the computations. The
experimental correction factors thus determined are shown in Figure 10. The drops as deter-
mined from the experiments were either spheres or ellipsoids of revolution with major axes §n
tixe direction of motion. The eccentricity of the drops is given in the insert of Figure 10.
The maximum Reynolds number (based on diameter) of the water-glycerine drops was 0.72;
the maximum for the DC 200 drops was 0.2. 1t is seen from this figure that the theoretical
solution agrees well with experimental results for diameter ratios up to about 0.5. The devis-
tion from the theoretical curves occurs at diameter eatio of 0.53 for the water-glycerine drops
and at a ratio of 0.65 for the DC 200 drops. Because of the limited range of the experiments,
no definite conclusion can be drawn regarding this difference. It is conceivable, however,
that the deviation from the approximate theory is 4« function of the viscosity ratio o; i.e., the
smaller this ratio the larger the diameter ratio at which the thecry deviates from the experi-
mental results. Although thz largest o used was 200, it is not believed that the deformation
of bodies with 0 + « would be much more severe. It is further noticed from Figure 10 that the
wall cortection factor is not too sensitive to Geformation from the spherical shape. A differ-
ence in the aves of the drops of up to about 15 percent occurred without noticeably affecting
the wall correction factor.

k13



B. MOTION IN A MOVING LIQUID

The preceding sections have dealt with the steady, axial translation of rigid and fluid
sphores in a stationary, viscous, incompressible fluid bounded by an infinitely long cylinder.
The solutions are now extended to include the case in which the fluid contained within the
cylinder is al=o in motion; i.e., a parabolic velocity distribution (Poiseuille flow) exists at
infinity. As before, two ptoblems are considered; the ficst deals with the motion of rigid
spheres, the second with fluid spheres. The method of solution is the same as before; the
only difference arises from the chémged bourdary conditioas at infinity.

Ap exact and approximate solution is given for the drag of moving rigid spheres in a
moving liguid. The approximate solution is shown to be valid for diameter ratios up to about
0.6. An approximate solution is given for fluid spheres and is estimated to be valid for diam-
eter ratios up to about 0.5. It is shown that the drag of a sphere in motion within a moving
liquid is composed of two parts: namely, the deag due to the motion of the sphere in a still
liquid, and the drag due to the motion of the liquid within the cylindrical tube past a station-
ary sphere. Values of wall correction factors have thus been computed for the two special
cases. The drag of moving spheres within a moving liquid can be obtained by appropriate
combination of these two correction factors.

1. Rigid Spheres

o. Exoct Solution. The problem considered here is that of a rigid sphere moving within
a fixed circular cylinder containing a fluid having a parabolic velocity distribution at infinity.
For convenience, it is deaired to take the coordinate system fixed with respect to the sphere.
Thus an equivalent system, as indicated in Figure 11, is used. The coordinate origin is again
taken at the center of the aphere, and the cylinder is assumed to be moving at constant veloc-
ity U in the negstive z-direction. The boundary conditions are:

at the cylinder walls (p = b): v, ==U; v, = 0 or ¥- > B2 - ;—b .
2
st infinity (2 = = ): T m UV (1 ) _,,_2_) v, =0 (76)
5°,

on the surface ol'the sphere (r = R): v =0; v,=0

After satisfying the boundary conditions on the cylinder valls, the stream function becomes
(similar to Equation [45])

¥z, p) -J. oK, (ap) 1, (@) + p Ko (ap) F, (@) + 1, (ap) [S, £, (@) + S, ()] +

o .
v vy . V (77)
+ p? 1,(a9) [S, 1, (@) + §, F, (@)]] cos am(.é. ...2.) o R
24



Ve
Sphere Moving with Velocity U in Moving Liquid Fquivalent System: Sphere Fixed; Tube “foving with
Inside Fixed Cylindrical Tube Velocity /. Velocity—U+V (1 -pz/bz_) at Infinity
_ Figure 11 — Definition Sketch
.

As before, the stream function ¥ is now rewritten as

" 2n 360 n
T oz AV % _
+“2-92-5 5,3(0,;02+~a~3a‘“+.,.)da+j (Ssa+2S4)(bo+baa2+...)da+(l}-V)]

_ Yo | "0 ‘
-1322[- &S'(A 4 L a. ab 4 ) 4 (S 28,) (.02 + b, a* } da (78]
+-I p L S,na” va a0’ 4., ) da -} (S;0428) (Bga® +b,8% +...) d 78]

0 0
+ 5; pé [S (382* ‘,; S‘G) ’(@1(}"’ 4}'030'5 fa,n) daf‘j ("2’53“4‘684) (boaz +
0 o |




Again, comparison with the solution for ¥ in spherical coordinates (Equation [52]) results in
the following relationships between the constants A By Ci D n? and a_, b, :

2 L
B, “aymt s by B,=-(12a, +16b,) 7; . ..
12
A3 AS A 3 o
A4, = ~6.55507 — a, - 15.3046 — 6y ~...—4.40866 — by = 4.76313 — b, -... + w-v)
) A RS R i
C,= 357466 — a, + 121172 — az+... + 131101 — by + 3.06092 — 762 +oes vy
, RS Y g3 » b
AS A7 A3 o8 g Vv
A,= 407765 — a, + 547950 — a, +... + 1.07056 — b + 11,9275 — b, +... - —5- =
RS R R® RS b
atc,
As previously (Equation [55])
2n + 1 1 2n -1 1
An - - — B, — - , Du ,
2 T R2M-1 2 " pin-3
(55]
0" = — 'Bl — . D'
2 R2%+1 2 * pin-t

Substituting the expressions for 4, 8, C,, D as given in Equation [79] into [55], the infinite

set for the determination of the constants Gy, Gy, ...8nd b, b, ... is obtained

from A'.z:
b /3 b, a, /5 AN
——(- m - 4.40868 x) +— (n ~4.763132%) + ... — (— » - 6.55507 A’) + — (~15.3046 %) +... = -U+V
R \2 53 p3I \2 >S

R R R
feom ::;""2:,
b/ ‘ b a, /1x a A

ofb , N 2 < 1 /15 o 3 -

-—(— n ~8.53507 x’) +— (37-15.30462%)+... — (— n~17.8733 x’) +— (~60.5861 A7) +... =2V 22
R\2 D3 3\ 2 DS

R R R
from A, [80]
.3 b. /4 \ 3 a A
‘0 2 (42 L 1 3 , . 2
— (~1.07052 A3) +- - (i- v -11,9275 x’) toes — (~4.07T765 2%) + — (54w=54.7T95007) 4... = == VA2
R pI\ S R3 >3 5

R R R
38




from C,:

. £80]
b 5, . 4 %
~— (-0.85026 X°) + — (8w - 743469 X") + ... — (~3.36589 A") + — (42# -37.5381 A%) + ... =0

etc,

As in the case of the motion of a sphere in a still liquid, a wall correction factor could be
defined based on the deag in an infinite medium {i.e., 8 mu R (U — V)). However, the wall
correction factor thus obtained wouid be a function of the diameter ratio A and the velocity
ratio [//V. It is more convenient to define a correction factor which is a function of A only.

The coefficient 3, as obtained from Equations (8] can be written (utilizing properties
of determinants) as: |

by = by - Y

where b, is determined from System 1 and 5., from System 2

System 1 System 2
bo '3 , =) , ‘b'o 3 ‘
— - 7~-~4.40868 A} +... =~-U e -4 40868 A) 4+, , . ==V
R\2 R \2 <
bo (5 s bo 5 | . o,
—(— 7 -6.55507T A +...=0 — = 7 -655507 A% +...=-2V2
R \2 - R \2 .

, (81]

bo o bo - 3 2
— (-1.07056A3)+...=0 — (-1.07056 A3)+... ==V A2
R R 5
etc. etc.

As given previously, the drag experienced by a sphere is

Drag = -4 »* u b, (58]

where the drag is taken positive in the negative z-direction as indicated in Figure 11. We
now define two wall correction factors /, and K, such that

2 3
. e ) [80)
1 " 6suUR 3 UR |
ktg_n - : ‘{: - - ""“‘"“'* [32]

3



TABLE 2

Wall Correction Factors (K ,) for Fixed Rigid Spheres in Poiseuille Flow

A roximate T'heror’ A
A | Exact Theory ‘)?Etluation‘[18])y Percent Difference |

100 |  Loc0 1.000 | 0.00
1ol | .28 | 1.255 | 0.00
0.2 1635 1.635 | 0.00
031 2231 | 2.231 0.00

0.4 | 3218 3.218 ? 0.00
0.5 5,004 4.973 - 083
0.6 8.651 8.377 -3
0.7 | 17671 15.666 -11.25
0.8 47.301 33,056 [ -30.

hence

Deag =8« pk A(UI\’I - V K2) [83])

Thus the drag of a sphere in motion within a
100 — o ey movirg liquid is composed of two parts: (1)
0 — "N T the drag due to the motion of the sphere with
| velocity U in a still liquid, and (2) the drag

due to the sphere held fixed within a moving

Exect Theory+-
40} : —

peros] liquid having a parsbolic velocity diatribution

(maximum velocity V) at infinity.

The coefficients boy have been deter-
mined in » revious section from Equations
[56]. The coefficients by, Were determined

numerically from System 2, Equation [81], in

Weli Corraction Facter, K

| the same manner as b , over a range of diam-

eter ratios A. The computed wall correction

factors K, (for rigid spheres moving in a still

liquid inside an infinitely long cylinder) were
shown in Table 1. Table 2 gives the computad
i | wall correction factors K, (for fixed rigid
2 spheres within Poiseuille flow). Both wall
correction factors are shown in Figure 12,
Figure 12 ~ Wall Correction Facisrs for The stream function in spherical cour-
Rigid Spheres within a Cylindee dinates for flow sbout a moving rigid spherc

40
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in Poiseuille flow is given by Equatior [39] with coefficients 4_, B, C,, D, a8 dutermined
— from Equation {79] (with coefficients a, and 3 evaiuated from Equations [80] or {511},

b. Approximate Solution. Again, an approximate solution for the rigid spheres can be
. obtained by retaining only the coefficients b, and a;. From Equation {80) we obtain
o A
(U-V) (1= 0.75857 A%) + V [= A2 —0,55640 A5
%- g -V (1= 75857 f )+V_<3 M 0. mx , ‘841
k27 1.9.1050 A + 2.0865 A% — 1.7088 A% +0.72603 A
The drag of the movi..g rigid spheres in a moving liquid becomes
(U=V) (1-0.75857 A®) +V (; A% -0.55640 A’) B
Drag = 6ruR —— : — _ (85]
1-2.1050 A+ 2.0865 A — 1.7068 A% +0.72603 A®
Using definitions of K, and K, (Fquations [60] and [82]), we obtain
1 - 0.75857 AS
L Ky= — e — {62]
1-2.1050 A + 2.0885 A% - 1.7088 A° + 0.72603 A°
| 1- =% -0.20217 2°
= | 7 1-12.1050 A + 2.0865 A® - 1.7068 AS + 0.72603 A®

Wall correction factors as obtained from Equations {62] and [86] are shown in Figure 12 and
“Tables 1 and 2. Previous theoretical results by Happel and Bywe6 and W,lkiyn,s (presented
in lerms of k') are also included in Figure 12.

It is seen from the tables that the approximate expressions for K, and K, agree well
with the exact solution up to diameter tatios of 0.6. However, for certain combinations of
UK, - VK, (e.g., U/V = 3/4), the range of good agreement will decrease to diameter ratios of
abou 0.5,

The approximate solution for the stream function in spherical coordinates foc flow about
a moving rigid sphere in Poiseuille flow is given by Equation (63] with coefficients A, B _,
C,.D, as follows:

| .
oHappel and Byme's solution:® w-nerl 32

Drag=6wpR ~ e A

g = 2,108 A + 2,087 A?

s ﬁ}f;f-li
3

Wekiys’'s wint.on:

Dreg=6wpR — P ST
1 =2.108 A+ 208 A% = 1.11 A
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¥(r, & = C;# (cos 6) (Agr’ +By —+ C,r* *»Dzr) +C; M (cos (4, 7'+ C P 4. ..

Bz.ai' B‘, Bﬁ’... ,.O
D,=b;x D Dg,...=0
| o by e |
A, =-4.40868 —— X - 6.55507 — A3+ -V
| R R3 N
5 . 87]
. (] , 1 2 v
C,= 1.31101— A%+ 8.57466 — )5 + - —
RS Rs 5 6’2
b a ,
A, = 107056 — A3 + 4.07765— XS - 2 ¥
- ‘ R3, RS 5 bz
L

, same as in Equation [63)

2. Fluid Spheres

For fluid bodies moving witkin Poiseuille flow, the saisz type of approximation is
utilized a= for the motion of a fluid sphere in a still liquid. As before, the origin of the coor-
Jinate system is taken at the center of the fluid body. The boundary conditions are:

at the cylinder walls (p = b): v =-U; v, - 0
at infinity (2 = T ) v =-U+V (1 - -—-), v =0
2/ °

at the surface of the fluid body: (8]

Equality of tangential velocities
Nomal velocities vanish (i.e., no diffusion)
Equality of tangential and normal forces.

Agsin assuming a resultant spherical shape for the fluid body, we obtain, as before, frcu the
boundary conditions on the sphere

9
, ‘ A , l-—o0 ,
, s 1 1 38 1 3 g 1 o 1 1 o
2 2p3l-0 2 ‘R 1-0 2 2 2,31-0 2 2R1-o0

’;,‘

- 1 1+=—0o (70)
C,~ =8B

2 2 RS i-0

4}—140
2
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Substituting expressions for A,, C,, 8, and D, (ss given in KEquatio:, EG’I}\ into Eauaties 7
two sigebraic equations for 3, and a, are obtained

| 2
1-2
1,2(—é 2 4.40866 A afs 1 8.55507 A3 | =177 . )
- g ’ — o ,’, e | WO oemem———itt gy et 8 [ ]
R\2 1l-o0 R\2 1-¢
0 o

. ly—-0
b \ a ;
0 (5 1 if15 3 .
— (=7 — -65850TA%) + —(— » —— - 17.8738 x") =27’
R(e 1-0 )*R(a' 1-0 2

From the above equations 5, and a, become

2 1~ (2 1 S T !
1+-50 (U- V)(l -0.75857 0——&5)+V(w : ‘A2—0;£?'.\E“'i con o 2}

b | 1+9/80 /" \3 1+3/30 e :
R 2x l+o0 . ___ 1+9/3¢ 1 Y, TR S
' , 1-2.1050 ——— X + 2.0885 A3 - 1.7088 /5 s £ 0.1 e A

l+0 lv‘ o l1+0 1+o~

] (90)
6 1 1 (U-V)[1-0.83462 (1 -0) A3]+V[5 A2 - 1,12206 (1-0) A’]
o3 2x lvo . 149730 1 . 16
BT 7T 91080 - uaoeos——-)ﬁ-uoos 1- 2”3" +0.72603 —— A®
140 l+0 l+a 140

The drag of the moving fluid spheres in a moving liquid then becomes

2 | -0 9 1 1- |
1.2, w.-n( ~0.75851 x’) v(— 1 e s)
3 A\ | 142/ o * _ 8771.+2/80 7 0.55640 =‘~‘*'2/So )

- [91

Orag = 8w uR - — L
1-2.1050 X+2M5—-—-X -17%8 X &072008
l+0 l40 1+a l+a
Defining
2 , ,
. | 4n° n’bol 27  l4o box (a2
R 1+2/3 8 _ 2 R "2
6xulR l+4—0
l+0 3
a3:d
K. =~ —4' "b 7 28 l4o 'bojz fgat
2 1+2/80 s 2 va 3,
SeuVR - le—0eo
l4o :

the wall correction factors K, sad K'z become
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Well Correction Faeclor, K,

100 -1 100 =~ TP S
80 : an b
60 ~ ! 1 -4 60 - -2b- i —
: En’oc'r-*-/l/ ' ¢
40 |- ‘ x»} -t 40 |-
| | / |
:*-{z;n J// | g
, f &
20 - : i } "‘“l §' 20» S
i 1 /’ o
ok JI /rﬁ____'“.r 2 10 i ) ] r A
- ¥ SN NSRS W 4 SR .
'3 - e . o 6 ; . -
‘ . - , c-o(Rigcd)«y Y /i .
4 } . 74 / o e ; 4 Aw"’w ; -
V%4 ‘ 74REl
)74 v e
2 . ' - e . R— ]
4 / t
6 o2 04 06 08 1.0 o 02 o4 os o‘i-a xio
Diameter Retio, A “ Diometer Ratio, A ?
Figure 13 — Wall Correction Factors K, Figure ; — Wall Correction Factors K
for Spheres within a Cylinder for Spheres within a Cylinder
1- .
| 1-0.75857 —— S
X 7 7 + / [
| A= ' o/ L 1 [75]
, 2/3 1 1-2/30 - LT3
1- 21050 A+2.0865 —— % -1.7088 — /°x5+o.7ma—-‘ix"
140 7 l+a l+0 l+0 :
2 1 o
1~ — A% - 0.20217 AS
8 1+"/3o 1+2/3a ,
K'2'= 2/3 ' 1 ' 1 2/30 . 1-0 (94]
1- 21059 A +2.0865 — A3 - 1.7068 - 3% £0.72602 —— AS
1+a~ l+0 l+a l+0
thus ~ —
142/8 ' :
‘ Dng = Gntﬂ — / z (UK, - VK, ) (95]
+a

The wall corraction factors A, and A’2 (as obumed from qulona (75] and [94]) are given as
a function of the diameter muo in Figwes 13 and 14 for three viscosity ratios (o = 0 {rigid

case), 1

estimated to be valid for diameter ratios up to 0.5,
The expression for the extetior stream function for fluid spheres in Poiseuiile flow is

given by Fquation (87] with coefficients 5, and a, determined from Equstion (89]. The stream
function in the interior region is given by Ecuation (78] (with coefficients as given in Equation
(57] and determined from Fquation (89]).
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TERMINAL VELOCITIES OF SPHERES

In many applications it is of interest to determine the terminal velocity (V) of rising ot
falling spheres. Such a veiocity can easily be determined from the results of the present in-
vestigation. A body rising or falling under the influence of gravity reaches such s velocity
(terminal velocity) when all forces scting on it are in equilibrium:

- Drag + Buoyant Force + Weight = 0

or » 9
l#-_- o : s
BI#R 1 *a‘—" (UK! VKz) P R yg + 3 kR yi‘guf) [96]

whore y is the density of liquid and y, is the density of sphere; hence

v.2

2 Rag(y )‘.) l+o

K, |
«V—k-— | (97}
1+ —o R

foro =0, V =0, and K, = 1; i.e., rigid
spheres moving in a still infinite medium,
Equation (97] reduces to Stokes law; namely,

| eﬁzy(y Y,
U= 5 -

The value of the appropriate wall correction
factor is obtained from Figure 5 or Table 1,
Figure 10 and Figure 14 or Table 2. The
mtio K,/K, sppearing in Equation [97] has
been evaluated from Equations [75] and [94};
thus

5 (o )
-
s
E 06
$ ]
o
»
3 oe
F 4
3
* 02
-
[
3

0

04 06 08
Dwameter Retie, A

i 0

Figure 15 — Wall Correction Factor Patio

2 -0

, = ——— A5 - 0.55640 ———

K .3 1*2/3@ +2/8a |

e - Z (98]
1 1 - 0.75857 x-’—'

The ratio K,/K, is given in Figere 15 for a range of diameter ratios A for viscosity tatios

l+2/3o‘

o0=0,1, and ». For the rigid case (0 = 0), the ratio X 2/’,(:l obtained from the exact solution

is also included.
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SUMMARY

The steady, slow motion of rigid and fluid spheres transiating along the axi= of an in-
finitely long cylindor has beer axamined. The solutions are given in tarms of the stream func-
tion. An exact aolution for the motion of rigid spheres is obtained in terms of an infinite set
of linear algebraic equaiions for the coefficients in the stream functior. The drag of a sphere
in motion within a moving liquid is shown io be composed of two paris: namely, the drag due
to the motion of the sphere in & still liquid inside the cylindrical tube, and the drag due to
the motivin of the liquid inside the cylindrical tube past a stationary sphere:

The deag experienccd by rigid spheres has been determined for the two special cases over a
cange of ratios of sphere-to-cylinder Jiameter. A very good approximation for the drag of the
rigid spheres is obtained by utilizing the first two equations of the infinite set. Tor fluid
spheres, an approximate solution (similar to the rigid case) has been obtained.

The approximate expressions for the wall correction factors for the spheres in a cylin-
drical tube iake the form

-0

1 0.75857 AS
A 1+2/ o
Ky = - +2/3¢ “2/ -0
1-2.1050 A + 2.088% A’-lme A5+omoa ¢
l40 140 l+0 140
S s 2
X - s 1+z/ d +2/80
2T T T 1,980 1 1- )
1-2.1050 - i A+ 2.0885 --x’ 1.7088 - /30 +o7m-_'ix°
:1+a l+0 1+o l+0

Exporimental resulte for the rigid and fluid cases confirm the theory. In general, the
results show that the wall effect for the flsid spheres is less thaa for corresponding rigid
spheres.

FUTURE INVESTIGATIONS

Since the experimental investigation showed that fluid bodies deform into spheroids
(ellipsoids of revolution), work is curreatly in progress to obtain a solution for the stream
function in spheroidal coordinates. It is hoped thot an exact solution for fluid bodies might
be obtained in this fashion, or it might at least improve the pres -at approximate solwtion for
large diameter ratios.
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in spherical coordi

APPENDIX A

GEGENBAUER POLYNORIALS ¢ 7% (0)

The Gegenbaver polynomials C. % (¢) which appesat in the solution for the stream function

inates can be evaluated by making use of their relationship to the Legendre

* polynomials (Reference 25, page 77):

S U
Ch ) = o (P (- By (e}

where P, (¢) is the Legendre polynomial of degree n, and

t =rcosb.
;% .
et =1
C';* ==
. 1 .
C’ﬁ == (1- 2
2 ) )
v 1
coh o= 5 (1-¢YH¢
VS PP N BT
’C4 :-’-—‘(1—8)(5'3 —])
8
% Yo mas
] ch = - - ad -8
8
y
ot = — (-t -ud+D
— 16
c% = — (1-eh (st -30¢ +5) ¢
16 -
| 1 | |
C7% = — (1-1) (429¢° - 498 t* 413562 - 5)
128
1 | |
0¥ = — (1-¢3)(715¢5 - 1001¢* + 385 2 -35)¢
9 198
0% o L (1- %) (2481¢° - 4004¢5 + 2002¢% - 20847 4 D)
10 25‘
etc.
*For a = 0, 1, the petynomials were evalueted fror: :he eEpeasion g\ves Ga D& 78, Reforonce 25.
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(1-¢3)

a2 e % (o)

de?
y =0 (.
ac 7 (e)

n (ﬂ—l)

2n -

1

(P

-2

2= P)==-n(n-) co8

=
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APPENDIX 8
EVALUATION OF INTEGRALS CONTAINING K , (ap) AND K, (ap)

The integrals containing K, (ap) were evaluated by successive differentiation with re-
spect to 2, starting with the known integral (Reference 25, page 38)

’S K (ap) cos azda = — !
" \ap) ¢O8 G244 = — —
' 0'% 2

Hence

r p2K 0 (dp) ocos azda -*-;-f Bll'l2 O=ntC 2.“(‘)

‘e

re i A ;

92K, 6 sinarda= P sin? 6 cos 0~ v O3 (¢)

Jo ' ¢ |

Iad 1 : 2 1 12 1 ~
p* K, a? cos azda = Y o sin?0(-8cos20+) = — & — -Cz.% ) - —x -0

2 ¢ 5 r 5 r

70

FLdin 1, |
[~ p2K, a® sin azda = — — sin?6(~15 cos® 0+9) cos ¢

Jo 2 2

92 Ko a*cos axds = z - 3in20(105 cos* 6-90 cos? 0+9)

Jo 2 2

-, 1 | .
p2 K, a® sin azda "% — sin? 0(945 cos* 9 - 1080 cos? §+225) cos 6
Jo L

po r 1

p?Ky oS cue azdo = = — sin? 0(~ 10,395 cos® 6.+ 14,175 cos* 64725 cos” 6+225)

‘0

2Ky " sin asda = = — sin? (- 185,135 cos® +218,205 con" 09,25 coa? 0+11,025) cos 8

0 ‘ f‘

p? Ko o cos azda - -'2! K] sin? 0(2,027,025 cos® 08,783,780 cos® 0+ 2,182,950 cos® 6-
70 e’

~3986,900 cos? 6+ 11,025)
etc.
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The integrals containing K, (ap) were evaluated by successive 3if?.- ‘1* % vith re-
spect to z, stamng with the known mwgml”

2zl
(K, (ap) sinazda = it
J 2pr
Hence
= 1 .
- p K, acosazda-:-sm 0:—-()"”(:)
o 2 r r
o L | 3
pl( a’sinazds = — — sin20.3-.cos0 = _Z b"”(t)
Jo 2 2
p 1 129
p K, a3 cosazda - — 3in260 (=15 c08%6+3) = = —— \"’"‘ ()
Jo 2 42 r
p* m ol , 60 1
pK, a* sinazda = — — sin? 0 (- 105 cos? 4 45) cos @ = - —— C;’“ (¢)
Jo 2 ot rt i
| pk, a®cosazda = — — sin? 0 (945 cos® 9-630 cos? 6+45) - 0% ()
J0 ' 2 rs r O
oK, a® sinazda = -;— - sin? 6 (10,395 cos* 6 - 9450 cos? 6+ 945) cos 0
0 € r
(" . 7 A T 1K 12K ene 6 e R0 A0 s el A 0AK)
p.l{’l a’ coe axda =3 8in“ 6 (- 185,185 cos® 6+62,370.cos™ 6 - 36,855 cos” 6+ 945)
Jo “ rf

4

o r 1 |
oK, a® sinozda = iy sin? 6 (- 2,027,025 cos® 641,621,620 cos* 0-654,885cos? 6+
“0 r

+84,105) con 9
etc,
Another group of integrals is decivable from
~ 1 z+r 1 1+cos @
0 r p2¢r l-cosf
and
- p. zer 1 1 /1 . l+cos® cos?\
5 K, (ap) asinazds = - > In — -~ —+ —— a-—-(—sinOh: e -+_f, )
0 »” P TP 4 2(zay) 22 l-cos@ sin
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These integrals, however, resuli in inTiniie velocities for p = 0; hence the intugrals

7K o (ap) a* cos az de (where n = 6d), %”’K o (ap) 6" sin az da (where n = even),
° » B

[T K, (ap) a” cos azda (whete n - even), and %.‘Kt (ap) a® sin azda (where n = odd) carnot
o -

coordinate solution.

be used in the present problem. These integrals correspond to 7, (¢)-terms in the spherical
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APPENDIX C
NUMERICAL EVALUATION OF INTEGRALS 5. AND § 2

The integrals S and §] defined as

by llz (ad) - 1,(ad) 1, (ab)

= 1,(ab)K, (ab) + 1, (@b K, (ad)
§3=1 (ad)" — —
0

12(ab) - Iy (ab) I, (ab)

were evaluated using Simpson’s rule. Increments of 0.1 in the argumeni weére used f- 1" >

range 0 to 3; for larger values increments of 0.2 were used. Th.c i #*5n of the Bessel funziions

were obtained from Reference 27. -
The S + 25 had to be evalusted in the combined form; nawmely,

1 ¢ O '
Sy + 2-5‘ --j

— . 7lad)
FA f“ = 10-1:2 :

o W7

The same increments as above were used. The runge 0 to 0.1 wa.o ov%” ted asing the small

value approximation of -
0.1

—j (1-2y+21n 2-2 In (ab)] d(izi‘i
0
where y = Euler's constant (0.577215665 ... ).

As check on the computations the integral S} + 252 was alzo evaluated in the comvined
form.
The evaluated integrals are tabulated in Table 3.



TABLE 3

~ Value: of the Integrals 52, 52, and S3 + 253~}

ent+l
s2

52

> PN e NN O

12

14

| 17.87328

| 60.5861
675,685
| 1377658 % 102 |

| 431.9631x 103 |
[ 191210 x 108 |
112.1989 x 107

| 15.3006
' 133.8245
2264366 x 10

£09.0951 x 102 |

2355148 x 104

6.55507

- 299769

- -408.0368
-924.7838x 10

3101441 10° |

- 144.1090x 10

| 123.3180 x 108 |

-875.3534 x 10° |
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~ APPENDIX D
EVALUATION OF THE DRAG OF SPHERES FROM THE STREAM FUNCTION

The drag of the spheres is to be evalusted by integrating the forces on the surface of
the sphere in the 2-direction

De=Dg+D,  [D-1)

where D is the drag, I
Dy is the tangential drag, and |
D is the normal drag.

From Figure 16 these components are:

G e | » o sin6 dS
g7 | 7q0h .
] (D-2)

D, - -f p,, cosf dS
where dS = surface element = 2 ¥R 2 sin 9 dé.

Hence

L4
Gg=2 R2g J' p'o,s'in..zedti
(i

[D-3]

a¥

D'«--2R21 - p,_sin0cos 0do . .
o Figure 18 -- Stress Components on Surface
° of Sphere

From Reference 18, page 374:

P,g=H (-r- Yy + -é—;—-) - Tangential stress (D-4]
de, |

Py =P+ 2u —a—— Normal stress (D-5]

' r

Utilizing the expressions for the velocity components (Equations [18], the tangential stress
becomes:

dv, vy dv =, 0% ) 1
L i E = l}.(.-m.r’n(»’-n B,

i — +2(2-1D ¢, 4
siné poe |
1 {D-4]
+28(a-2 D, —]

 dad

1

N - -
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Since C;% = (1/2n-D (P _, - P,), the tangential drag becomes

. [ Z"-v ) N AP
o 2 ' : ‘

Ru+2

-7

+(?-DC R4 aln-9 D, —|sindd6
Feom Reference 25, page 52

1 A
‘. Fﬁ(cose) sin 6d0 =2 form =0
J
0

=0 otherwise ;
her.ce

Dy=8R2ap (B, —+C, R (-8]

R _
In order to evaluate the normal stress conponent (p, ), the pressure (p) must first be obtained
from the equation of motion. From Reforence 18, page 373, we have for slow flow:

- 2 - — — (D-9]
r r et d0

- — [D-10]
r23in2 6 r d6

2 32 2 9 coth 3 1 92
where V = — +— —+ — + —
872 r dr '2 a0 '2 602

31} 1 d”'@ Y, coté

- » + =0 FEquation of Continuity (D-11]
ar r a6 r . % Equation of Continuity [D-11]

Hence

2 (*‘1‘, b\ /19% Y% cotd
—|—t = = bt —— vy
P \r r g2 97 :

2 2

[D-12]
4 1 4

and

1 ap 2 efle =, ™ f a3
e (-1

58

sl 5 il 2t



Hence from Equation (18]

1 9p a-2 n 1
- bl g S P, [—2(‘2 nel) C 2,202 n-—S) D, ;—;] (B.14]
- »

Integratlng

-
2P0 p |+ (D-15)

Integrating the equation containing the parial derivative of » with respect to 6, we obtain

.Sj , Coi2nen) ., 2@a-® 1| |
p= }( ) P,'j_". [— —’:Tn- C;’r' - —-—n—— D' -;-;— + /(') [D-IG‘]

2
hence f(r)= f(6) =0 a2

Therefore
Z‘" f p 1 [o@ne1 )
Ppp = ¥ Py -2(n-2) 4_r" Y424V B, — + | - ne Z) —oal C ™ty

(D17

f[( "3 -0 | 0, - }
.o | "~

r P sin 26d7=0 form>2 or m even

hda)

"~

From Reference 25, page 52,

-— for m <2 and m odd.

The noemal deag becomes:
v =-4R*xyu | 2B ...1;."9(}}[3 D _l_ ~ 1¢
K PP TRt T (D-18)
Adding the two drag components we obtain for the drag of a sphere moving in & medium:

De-4apD, [D-19]

The same resslt has been obtained by Savic?® for the case A_ = C = 0.
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APPENOIX E
MOTION OF SPHERES IN A SPHERICAL CONTAINER

‘The motion of a sphere at the instant it passes the center of a sphetic;l container
(neglecting unsteady effects)* is of interest as guide and upper bound for the motion within a
cylindrical container, since the wall effects for corresponding spherical boundaries exceed

" those for cylindrical ones.®* . ... .. |

The origin of the coordinates is taken at the center of the sphere, and the container
is assumed to be moving at constant velocity U in the negative z-direction, as indicated in
Figure 17. The boundary conditions for the sphere have been given in a previous section.

The boundary conditions at the container walls {r = P) are:

' : 1 . 2.2
v’--UcOSO‘ or Ts-éf UP*sin*f

f 120' = U sin 6 [f!,.l]:

From Equations (E-1], [39], and [67] we obtain:

1 , 1
A P*+B ——+ C, P24 D —— -vpy), _, =0
pr-t B | (E-2]

=0

A=’

, 1 . , 1 ,
n;Au pr=2 _(n-1) B, — : +(n+2) C P* - (n-3) D, - (2 U]

P,l+—l ‘ P,a-‘

Moy 7/
, £

Sphere Passing Center of Spherical Container Equivaiont System: Sphere Fized; Spherice!
with Velscity U Contsiner Moving with Velecity U

Figure 17 — Definition Sketch for Sphere in Spherical Container

*The corresponding two-dimeasional problem fui a rigid cylinder hes boe,  “sted by Frazer {Reference 28).
s48¢e Refcrence 29.
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Solving for 4_, B,C,D,E,a:dF, weobtsin

5 , 8/3 <
l+o+=A3 o —{—=-0) S
4 2

-

=il T3\ *'
' 140m—| =40 20_Z[Z_s\as 6
: l+a~-‘-)-(0 ea))‘-a» 2)* -2(2 a)k +(1-aA

- Y W

g atow
2 3/3 , 5 3/3 |« '

[¥3 |
e\ 4 .

/

C W e m e - - - & — e m——— — - - '7""‘ e —
2 p2 2/3 5 . R/8

92 .
1+-§0-(]-0)X5

3
2, Y Uk - 3/3 5 . 3738 \ A
J 1%?»-2—(-?- -+-o) A+-2- A3 -’?(;~0) AS 4 (1-0)A8
| ! (E-3]

A":B':'GA:D‘&E,'QFI‘!O ﬂ24

The stream function in the exterior of the sphere thus takes the form

1 | 1
v 3 sin? @ -(A2,r2 +C, s B, — +D,r ) (E-4]
, ’ ’

where A, B, ', and D, are given above, whereas the stream function in the interior
becomes:
1 o 2
e ain2g 2
Y=g ain”0 [Ez' (1‘ ;‘5’)] [E-3)

where £, is given in Equation [E-3].
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1+2/80
Fore an infinite medium ,D -- = UIZ e .

l+0o
for motion in a spherical container becomes
1T s
K 7 1+ 2/30 7
_? %x*i 2 13-3 .1.:,3_!.3_.‘.'.;5,, 10 A
4 l+o 9 l+0 4 lse l+o

For a rigid srhere {0 = 0) the above equation reduces to:

| 1-2% |

b= 9 5 « 9 e ’

1-—d+ =A%,
4 2 4

For a fluid sphere of vannhmg viscosity (4; =0 or o = =):

3 3 .
1-=2+=2%-28
2 2

For a fluid sphere with viscosity equal to that of the interng! medium (o = 1):

, 1
K= — 15 3 3
I-—A+-—)\3-'—-4\5
8 4 8

. Hence the wall correction factor

~ (F-6}

(E.7)°

{E- 9] s

The wall correction factors for these three cases are shown as a function of A in Table 4 and

Figure 18,

TABLE 4 — Wall Correction Factors for Spheres Moving in a Spierical Container

\ | SRigid | ‘Fluid Spheles
| Spheres | ETEE = 0
00 | im0 | 1000 1,000
0.1 1.286 1229 1.176
0.2 1.756 1575 1428
0.3 | 25713 2.126 1815
0.4 | 406 | 3.066 2469
0.5 | 1.294 4831 o
0.6 14.948 8.636 | £.569
07 | 3830 18.762 14826
0.8 138.224 58,480 50,773
0.9 120178 | 43L770 | 439056

*This. eqmuoa qm with thet of Cuujndu-7 snd Loe’ except thet Cunninghem shews 0-16 term;

this sppears to be a printing ervor.
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